
Package: splines2 (via r-universe)
November 2, 2024

Title Regression Spline Functions and Classes

Version 0.5.4.9000

Description Constructs basis functions of B-splines, M-splines,
I-splines, convex splines (C-splines), periodic splines,
natural cubic splines, generalized Bernstein polynomials, their
derivatives, and integrals (except C-splines) by closed-form
recursive formulas. It also contains a C++ head-only library
integrated with Rcpp. See Wang and Yan (2021)
<doi:10.6339/21-JDS1020> for details.

Imports stats, graphics, Rcpp

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, tinytest, RcppArmadillo

Depends R (>= 3.2.3)

VignetteBuilder knitr

License GPL (>= 3)

URL https://wwenjie.org/splines2,

https://github.com/wenjie2wang/splines2

BugReports https://github.com/wenjie2wang/splines2/issues

Encoding UTF-8

RoxygenNote 7.3.2

Repository https://wenjie2wang.r-universe.dev

RemoteUrl https://github.com/wenjie2wang/splines2

RemoteRef HEAD

RemoteSha c04049f4ab94aa0194d83b6de86a2cf30e94c70e

Contents
bernsteinPoly . 2
bSpline . 4

1

https://doi.org/10.6339/21-JDS1020
https://wwenjie.org/splines2
https://github.com/wenjie2wang/splines2
https://github.com/wenjie2wang/splines2/issues

2 bernsteinPoly

cSpline . 7
deriv . 10
iSpline . 12
knots . 14
mSpline . 15
naturalSpline . 18
plot.splines2 . 22
predict . 23
update . 25

Index 27

bernsteinPoly Generalized Bernstein Polynomial Basis Functions

Description

Returns generalized Bernstein polynomial basis functions of the given degree over the specified
range.

Usage

bernsteinPoly(
x,
degree = 3,
intercept = FALSE,
Boundary.knots = NULL,
derivs = 0L,
integral = FALSE,
...

)

bpoly(
x,
degree = 3,
intercept = FALSE,
Boundary.knots = NULL,
derivs = 0L,
integral = FALSE,
...

)

Arguments

x The predictor variable taking values inside of the specified boundary. Missing
values are allowed and will be returned as they are.

degree A nonnegative integer representing the degree of the polynomials.

bernsteinPoly 3

intercept If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

Boundary.knots Boundary points at which to anchor the Bernstein polynomial basis. The default
value is NULL and the boundary knots is set internally to be range(x, na.rm =
TRUE).

derivs A nonnegative integer specifying the order of derivatives. The default value is
0L for Bernstein polynomial basis functions.

integral A logical value. If TRUE, the integrals of the Bernstein polynomials will be
returned. The default value is FALSE.

... Optional arguments that are not used.

Details

The Bernstein polynomial basis functions are defined over the support from 0 to 1. The generalized
Bernstein polynomial basis functions extend the support to any finite interval in the real line.

The function bpoly() is an alias to encourage the use in a model formula.

Value

A BernsteinPoly object that is essentially a numeric matrix of dimension length(x) by degree
+ as.integer(intercept).

Examples

library(splines2)

x1 <- seq.int(0, 1, 0.01)
x2 <- seq.int(- 2, 2, 0.01)

Bernstein polynomial basis matrix over [0, 1]
bMat1 <- bernsteinPoly(x1, degree = 4, intercept = TRUE)

generalized Bernstein polynomials basis over [- 2, 2]
bMat2 <- bernsteinPoly(x2, degree = 4, intercept = TRUE)

op <- par(mfrow = c(1, 2))
plot(bMat1)
plot(bMat2)

the first and second derivative matrix
d1Mat1 <- bernsteinPoly(x1, degree = 4, derivs = 1, intercept = TRUE)
d2Mat1 <- bernsteinPoly(x1, degree = 4, derivs = 2, intercept = TRUE)
d1Mat2 <- bernsteinPoly(x2, degree = 4, derivs = 1, intercept = TRUE)
d2Mat2 <- bernsteinPoly(x2, degree = 4, derivs = 2, intercept = TRUE)

par(mfrow = c(2, 2))
plot(d1Mat1)
plot(d1Mat2)
plot(d2Mat1)
plot(d2Mat2)

4 bSpline

reset to previous plotting settings
par(op)

or use the deriv method
all.equal(d1Mat1, deriv(bMat1))
all.equal(d2Mat1, deriv(bMat1, 2))

the integrals
iMat1 <- bernsteinPoly(x1, degree = 4, integral = TRUE, intercept = TRUE)
iMat2 <- bernsteinPoly(x2, degree = 4, integral = TRUE, intercept = TRUE)
all.equal(deriv(iMat1), bMat1, check.attributes = FALSE)
all.equal(deriv(iMat2), bMat2, check.attributes = FALSE)

bSpline B-Spline Basis for Polynomial Splines

Description

Generates the spline basis matrix for B-splines representing the family of piecewise polynomials
with the specified interior knots, degree, and boundary knots, evaluated at the values of x.

Usage

bSpline(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = FALSE,
Boundary.knots = NULL,
periodic = FALSE,
derivs = 0L,
integral = FALSE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...

)

ibs(
x,
df = NULL,
knots = NULL,
degree = 3,
intercept = FALSE,
Boundary.knots = NULL,
...

)

bSpline 5

dbs(
x,
derivs = 1L,
df = NULL,
knots = NULL,
degree = 3,
intercept = FALSE,
Boundary.knots = NULL,
...

)

bsp(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = FALSE,
Boundary.knots = NULL,
periodic = FALSE,
derivs = 0L,
integral = FALSE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...

)

Arguments

x The predictor variable. Missing values are allowed and will be returned as they
are.

df Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df - degree
- as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. For periodic splines, df -
as.integer(intercept) internal knots will be chosen at suitable quantiles of
x relative to the beginning of the cyclic intervals they belong to (see Examples)
and the number of internal knots must be greater or equal to the specified degree
- 1. If internal knots are specified via knots, the specified df will be ignored.

knots The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots. For periodic splines, the
number of knots must be greater or equal to the specified degree - 1. Duplicated
internal knots are not allowed.

degree A nonnegative integer specifying the degree of the piecewise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piecewise constant
basis functions.

intercept If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

6 bSpline

Boundary.knots Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary.knots. For
periodic splines, the specified bounary knots define the cyclic interval.

periodic A logical value. If TRUE, the periodic splines will be returned. The default value
is FALSE.

derivs A nonnegative integer specifying the order of derivatives of splines basis func-
tion. The default value is 0.

integral A logical value. If TRUE, the corresponding integrals of spline basis functions
will be returned. The default value is FALSE. For periodic splines, the integral of
each basis is integrated from the left boundary knot.

warn.outside A logical value indicating if a warning should be thrown out when any x is out-
side the boundary. This option can also be set through options("splines2.warn.outside")
after the package is loaded.

... Optional arguments that are not used.

Details

This function extends the bs() function in the splines package for B-spline basis functions by
allowing piecewise constant (left-closed and right-open except on the right boundary) spline basis
of degree zero. In addition, the function provides derivatives or integrals of the B-spline basis func-
tions when one specifies the arguments derivs or integral appropriately. The function constructs
periodic B-splines when periodic is TRUE. All the implementations are based on the closed-form
recursion formula following De Boor (1978) and Wang and Yan (2021).

The functions ibs() and dbs() are provided for convenience. The former provides the integrals of
B-splines and is equivalent to bSpline() with integral = TRUE. The latter produces the derivatives
of given order of B-splines and is equivalent to bSpline() with default derivs = 1. The function
bsp() is an alias of to encourage the use in a model formula.

Value

A numeric matrix of length(x) rows and df columns if df is specified. If knots are specified
instead, the output matrix will consist of length(knots) + degree + as.integer(intercept)
columns if periodic = FALSE, or length(knots) + as.integer(intercept) columns if periodic
= TRUE. Attributes that correspond to the arguments specified are returned for usage of other func-
tions in this package.

References

De Boor, Carl. (1978). A practical guide to splines. Vol. 27. New York: Springer-Verlag.

Wang, W., & Yan, J. (2021). Shape-restricted regression splines with R package splines2. Journal
of Data Science, 19(3),498–517.

See Also

knots for extracting internal and boundary knots.

cSpline 7

Examples

library(splines2)

set.seed(1)
x <- runif(100)
knots <- c(0.3, 0.5, 0.6) # internal knots

cubic B-splines
bsMat <- bSpline(x, knots = knots, degree = 3, intercept = TRUE)
ibsMat <- update(bsMat, integral = TRUE) # the integrals
d1Mat <- deriv(bsMat) # the 1st derivaitves
d2Mat <- deriv(bsMat, 2) # the 2nd derivaitves

op <- par(mfrow = c(2, 2), mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
plot(bsMat, ylab = "Cubic B-splines")
plot(ibsMat, ylab = "The integrals")
plot(d1Mat, ylab = "The 1st derivatives")
plot(d2Mat, ylab = "The 2nd derivatives")

evaluate at new values
predict(bsMat, c(0.125, 0.801))

periodic B-splines
px <- seq(0, 3, 0.01)
pbsMat <- bSpline(px, knots = knots, Boundary.knots = c(0, 1),

intercept = TRUE, periodic = TRUE)
ipMat <- update(pbsMat, integral = TRUE)
dpMat <- deriv(pbsMat)
dp2Mat <- deriv(pbsMat, 2)

plot(pbsMat, ylab = "Periodic B-splines", mark_knots = "b")
plot(ipMat, ylab = "The integrals", mark_knots = "b")
plot(dpMat, ylab = "The 1st derivatives", mark_knots = "b")
plot(dp2Mat, ylab = "The 2nd derivatives", mark_knots = "b")
par(op) # reset to previous plotting settings

cSpline C-Spline Basis for Polynomial Splines

Description

Generates the convex regression spline (called C-spline) basis matrix by integrating I-spline basis
for a polynomial spline or the corresponding derivatives.

Usage

cSpline(
x,
df = NULL,

8 cSpline

knots = NULL,
degree = 3L,
intercept = TRUE,
Boundary.knots = NULL,
derivs = 0L,
scale = TRUE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...

)

csp(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = TRUE,
Boundary.knots = NULL,
derivs = 0L,
scale = TRUE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...

)

Arguments

x The predictor variable. Missing values are allowed and will be returned as they
are.

df Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df - degree
- as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. For periodic splines, df -
as.integer(intercept) internal knots will be chosen at suitable quantiles of
x relative to the beginning of the cyclic intervals they belong to (see Examples)
and the number of internal knots must be greater or equal to the specified degree
- 1. If internal knots are specified via knots, the specified df will be ignored.

knots The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots. For periodic splines, the
number of knots must be greater or equal to the specified degree - 1. Duplicated
internal knots are not allowed.

degree The degree of C-spline defined to be the degree of the associated M-spline in-
stead of actual polynomial degree. For example, C-spline basis of degree 2 is
defined as the scaled double integral of associated M-spline basis of degree 2.

intercept If TRUE by default, all of the spline basis functions are returned. Notice that
when using C-Spline for shape-restricted regression, intercept = TRUE should
be set even when an intercept term is considered additional to the spline basis in
the model.

cSpline 9

Boundary.knots Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary.knots. For
periodic splines, the specified bounary knots define the cyclic interval.

derivs A nonnegative integer specifying the order of derivatives of C-splines. The de-
fault value is 0L for C-spline basis functions.

scale A logical value indicating if scaling C-splines is required. If TRUE by default,
each C-spline basis is scaled to have unit height at right boundary knot. The
corresponding I-spline and M-spline produced by deriv methods will be scaled
to the same extent.

warn.outside A logical value indicating if a warning should be thrown out when any x is out-
side the boundary. This option can also be set through options("splines2.warn.outside")
after the package is loaded.

... Optional arguments that are not used.

Details

It is an implementation of the closed-form C-spline basis derived from the recursion formula of
I-splines and M-splines. The function csp() is an alias of to encourage the use in a model formula.

Value

A numeric matrix of length(x) rows and df columns if df is specified. If knots are specified
instead, the output matrix will consist of length(knots) + degree + as.integer(intercept)
columns. Attributes that correspond to the arguments specified are returned for usage of other
functions in this package.

References

Meyer, M. C. (2008). Inference using shape-restricted regression splines. The Annals of Applied
Statistics, 2(3), 1013–1033.

See Also

iSpline for I-splines; mSpline for M-splines.

Examples

library(splines2)

x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)

when 'scale = TRUE' (by default)
csMat <- cSpline(x, knots = knots, degree = 2)

plot(csMat, ylab = "C-spline basis", mark_knots = "internal")
isMat <- deriv(csMat)
msMat <- deriv(csMat, derivs = 2)

10 deriv

plot(isMat, ylab = "scaled I-spline basis")
plot(msMat, ylab = "scaled M-spline basis")

when 'scale = FALSE'
csMat <- cSpline(x, knots = knots, degree = 2, scale = FALSE)

the corresponding I-splines and M-splines (with same arguments)
isMat <- iSpline(x, knots = knots, degree = 2)
msMat <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)

or using deriv methods (more efficient)
isMat1 <- deriv(csMat)
msMat1 <- deriv(csMat, derivs = 2)

equivalent
stopifnot(all.equal(isMat, isMat1, check.attributes = FALSE))
stopifnot(all.equal(msMat, msMat1, check.attributes = FALSE))

deriv Derivatives of Spline Basis Functions

Description

Returns derivatives of given order for the given spline basis functions.

Usage

S3 method for class 'BSpline'
deriv(expr, derivs = 1L, ...)

S3 method for class 'MSpline'
deriv(expr, derivs = 1L, ...)

S3 method for class 'ISpline'
deriv(expr, derivs = 1L, ...)

S3 method for class 'CSpline'
deriv(expr, derivs = 1L, ...)

S3 method for class 'BernsteinPoly'
deriv(expr, derivs = 1L, ...)

S3 method for class 'NaturalSpline'
deriv(expr, derivs = 1L, ...)

S3 method for class 'NaturalSplineK'
deriv(expr, derivs = 1L, ...)

deriv 11

Arguments

expr Objects of class bSpline2, ibs, mSpline, iSpline, cSpline, bernsteinPoly
or naturalSpline with attributes describing knots, degree, etc.

derivs A positive integer specifying the order of derivatives. By default, it is 1L for the
first derivatives.

... Optional arguments that are not used.

Details

At knots, the derivative is defined to be the right derivative except at the right boundary knot. By
default, the function returns the first derivatives. For derivatives of order greater than one, nested
function calls such as deriv(deriv(expr)) are supported but not recommended. For a better
performance, argument derivs should be specified instead.

This function is designed for objects produced by this package. It internally extracts necessary
specification about the spline/polynomial basis matrix from its attributes. Therefore, the function
will not work if the key attributes are not available after some operations.

Value

A numeric matrix of the same dimension with the input expr.

Examples

library(splines2)

x <- c(seq.int(0, 1, 0.1), NA) # NA's will be kept.
knots <- c(0.3, 0.5, 0.6)

helper function
stopifnot_equivalent <- function(...) {

stopifnot(all.equal(..., check.attributes = FALSE))
}

integal of B-splines and the corresponding B-splines integrated
ibsMat <- ibs(x, knots = knots)
bsMat <- bSpline(x, knots = knots)

the first derivative
d1Mat <- deriv(ibsMat)
stopifnot_equivalent(bsMat, d1Mat)

the second derivative
d2Mat1 <- deriv(bsMat)
d2Mat2 <- deriv(ibsMat, derivs = 2L)
stopifnot_equivalent(d2Mat1, d2Mat2)

nested calls are supported
d2Mat3 <- deriv(deriv(ibsMat))
stopifnot_equivalent(d2Mat2, d2Mat3)

12 iSpline

C-splines, I-splines, M-splines and the derivatives
csMat <- cSpline(x, knots = knots, intercept = TRUE, scale = FALSE)
isMat <- iSpline(x, knots = knots, intercept = TRUE)
stopifnot_equivalent(isMat, deriv(csMat))

msMat <- mSpline(x, knots = knots, intercept = TRUE)
stopifnot_equivalent(msMat, deriv(isMat))
stopifnot_equivalent(msMat, deriv(csMat, 2))
stopifnot_equivalent(msMat, deriv(deriv(csMat)))

dmsMat <- mSpline(x, knots = knots, intercept = TRUE, derivs = 1)
stopifnot_equivalent(dmsMat, deriv(msMat))
stopifnot_equivalent(dmsMat, deriv(isMat, 2))
stopifnot_equivalent(dmsMat, deriv(deriv(isMat)))
stopifnot_equivalent(dmsMat, deriv(csMat, 3))
stopifnot_equivalent(dmsMat, deriv(deriv(deriv(csMat))))

iSpline I-Spline Basis for Polynomial Splines

Description

Generates the I-spline (integral of M-spline) basis matrix for a polynomial spline or the correspond-
ing derivatives of given order.

Usage

iSpline(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = TRUE,
Boundary.knots = NULL,
derivs = 0L,
warn.outside = getOption("splines2.warn.outside", TRUE),
...

)

isp(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = TRUE,
Boundary.knots = NULL,
derivs = 0L,
warn.outside = getOption("splines2.warn.outside", TRUE),

iSpline 13

...
)

Arguments

x The predictor variable. Missing values are allowed and will be returned as they
are.

df Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df - degree
- as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. For periodic splines, df -
as.integer(intercept) internal knots will be chosen at suitable quantiles of
x relative to the beginning of the cyclic intervals they belong to (see Examples)
and the number of internal knots must be greater or equal to the specified degree
- 1. If internal knots are specified via knots, the specified df will be ignored.

knots The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots. For periodic splines, the
number of knots must be greater or equal to the specified degree - 1. Duplicated
internal knots are not allowed.

degree The degree of I-spline defined to be the degree of the associated M-spline instead
of actual polynomial degree. For example, I-spline basis of degree 2 is defined
as the integral of associated M-spline basis of degree 2.

intercept If TRUE by default, all of the spline basis functions are returned. Notice that when
using I-Spline for monotonic regression, intercept = TRUE should be set even
when an intercept term is considered additional to the spline basis functions.

Boundary.knots Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary.knots. For
periodic splines, the specified bounary knots define the cyclic interval.

derivs A nonnegative integer specifying the order of derivatives of I-splines.

warn.outside A logical value indicating if a warning should be thrown out when any x is out-
side the boundary. This option can also be set through options("splines2.warn.outside")
after the package is loaded.

... Optional arguments that are not used.

Details

It is an implementation of the closed-form I-spline basis based on the recursion formula given by
Ramsay (1988). The function isp() is an alias of to encourage the use in a model formula.

Value

A numeric matrix of length(x) rows and df columns if df is specified. If knots are specified
instead, the output matrix will consist of length(knots) + degree + as.integer(intercept)
columns. Attributes that correspond to the arguments specified are returned for usage of other
functions in this package.

14 knots

References

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4), 425–441.

See Also

mSpline for M-splines; cSpline for C-splines;

Examples

library(splines2)

an example given in Ramsay (1988)
x <- seq.int(0, 1, by = 0.01)
knots <- c(0.3, 0.5, 0.6)
isMat <- iSpline(x, knots = knots, degree = 2)

op <- par(mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
plot(isMat, ylab = "I-spline basis", mark_knots = "internal")
par(op) # reset to previous plotting settings

the derivative of I-splines is M-spline
msMat1 <- iSpline(x, knots = knots, degree = 2, derivs = 1)
msMat2 <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)
stopifnot(all.equal(msMat1, msMat2))

knots Extract Knots from the Given Object

Description

Methods for the generic function knots from the stats package to obtain internal or boundary knots
from the objects produced by this package.

Usage

S3 method for class 'splines2'
knots(Fn, type = c("internal", "boundary"), ...)

Arguments

Fn An splines2 object produced by this package.

type A character vector of length one indicating the type of knots to return. The avail-
able choices are "internal" for internal knots and "Boundary" for boundary
knots.

... Optional arguments that are not used now.

Value

A numerical vector.

mSpline 15

Examples

library(splines2)

set.seed(123)
x <- rnorm(100)

B-spline basis
bsMat <- bSpline(x, df = 8, degree = 3)

extract internal knots placed based on the quantile of x
(internal_knots <- knots(bsMat))

extract boundary knots placed based on the range of x
boundary_knots <- knots(bsMat, type = "boundary")
all.equal(boundary_knots, range(x))

mSpline M-Spline Basis for Polynomial Splines

Description

Generates the basis matrix of regular M-spline, periodic M-spline, and the corresponding integrals
and derivatives.

Usage

mSpline(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = FALSE,
Boundary.knots = NULL,
periodic = FALSE,
derivs = 0L,
integral = FALSE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...

)

msp(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = FALSE,
Boundary.knots = NULL,
periodic = FALSE,

16 mSpline

derivs = 0L,
integral = FALSE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...

)

Arguments

x The predictor variable. Missing values are allowed and will be returned as they
are.

df Degree of freedom that equals to the column number of the returned matrix.
One can specify df rather than knots, then the function chooses df - degree
- as.integer(intercept) internal knots at suitable quantiles of x ignoring
missing values and those x outside of the boundary. For periodic splines, df -
as.integer(intercept) internal knots will be chosen at suitable quantiles of
x relative to the beginning of the cyclic intervals they belong to (see Examples)
and the number of internal knots must be greater or equal to the specified degree
- 1. If internal knots are specified via knots, the specified df will be ignored.

knots The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots. For periodic splines, the
number of knots must be greater or equal to the specified degree - 1. Duplicated
internal knots are not allowed.

degree A nonnegative integer specifying the degree of the piecewise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piecewise constant
basis functions.

intercept If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

Boundary.knots Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary.knots. For
periodic splines, the specified bounary knots define the cyclic interval.

periodic A logical value. If TRUE, the periodic splines will be returned. The default value
is FALSE.

derivs A nonnegative integer specifying the order of derivatives of splines basis func-
tion. The default value is 0.

integral A logical value. If TRUE, the corresponding integrals of spline basis functions
will be returned. The default value is FALSE. For periodic splines, the integral of
each basis is integrated from the left boundary knot.

warn.outside A logical value indicating if a warning should be thrown out when any x is out-
side the boundary. This option can also be set through options("splines2.warn.outside")
after the package is loaded.

... Optional arguments that are not used.

mSpline 17

Details

This function contains an implementation of the closed-form M-spline basis based on the recursion
formula given by Ramsay (1988) or periodic M-spline basis following the procedure producing
periodic B-splines given in Piegl and Tiller (1997). For monotone regression, one can use I-splines
(see iSpline) instead of M-splines. For shape-restricted regression, see Wang and Yan (2021) for
examples.

The function msp() is an alias of to encourage the use in a model formula.

Value

A numeric matrix of length(x) rows and df columns if df is specified. If knots are specified
instead, the output matrix will consist of length(knots) + degree + as.integer(intercept)
columns if periodic = FALSE, or length(knots) + as.integer(intercept) columns if periodic
= TRUE. Attributes that correspond to the arguments specified are returned for usage of other func-
tions in this package.

References

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical science, 3(4), 425–441.

Piegl, L., & Tiller, W. (1997). The NURBS book. Springer Science & Business Media.

Wang, W., & Yan, J. (2021). Shape-restricted regression splines with R package splines2. Journal
of Data Science, 19(3),498–517.

See Also

bSpline for B-splines; iSpline for I-splines; cSpline for C-splines.

Examples

library(splines2)

example given in the reference paper by Ramsay (1988)
x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)
msMat <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)

op <- par(mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
plot(msMat, mark_knots = "internal")

derivatives of M-splines
dmsMat <- mSpline(x, knots = knots, degree = 2,

intercept = TRUE, derivs = 1)

or using the deriv method
dmsMat1 <- deriv(msMat)
stopifnot(all.equal(dmsMat, dmsMat1, check.attributes = FALSE))

periodic M-splines
x <- seq.int(0, 3, 0.01)
bknots <- c(0, 1)

18 naturalSpline

pMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE)

integrals
iMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,

Boundary.knots = bknots, periodic = TRUE, integral = TRUE)
first derivatives by "derivs = 1"
dMat1 <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,

Boundary.knots = bknots, periodic = TRUE, derivs = 1)
first derivatives by using the deriv() method
dMat2 <- deriv(pMat)

par(mfrow = c(2, 2))
plot(pMat, ylab = "Periodic Basis", mark_knots = "boundary")
plot(iMat, ylab = "Integrals from 0")
abline(v = seq.int(0, max(x)), h = seq.int(0, max(x)), lty = 2, col = "grey")
plot(dMat1, ylab = "1st derivatives by 'derivs=1'", mark_knots = "boundary")
plot(dMat2, ylab = "1st derivatives by 'deriv()'", mark_knots = "boundary")
par(op) # reset to previous plotting settings

default placement of internal knots for periodic splines
default_knots <- function(x, df, intercept = FALSE,

Boundary.knots = range(x, na.rm = TRUE)) {
get x in the cyclic interval [0, 1)
x2 <- (x - Boundary.knots[1]) %% (Boundary.knots[2] - Boundary.knots[1])
knots <- quantile(x2, probs = seq(0, 1, length.out = df + 2 - intercept))
unname(knots[- c(1, length(knots))])

}

df <- 8
degree <- 3
intercept <- TRUE
internal_knots <- default_knots(x, df, intercept)

1. specify df
spline_basis1 <- mSpline(x, degree = degree, df = df,

periodic = TRUE, intercept = intercept)
2. specify knots
spline_basis2 <- mSpline(x, degree = degree, knots = internal_knots,

periodic = TRUE, intercept = intercept)

all.equal(internal_knots, knots(spline_basis1))
all.equal(spline_basis1, spline_basis2)

naturalSpline Natural Cubic Spline Basis for Polynomial Splines

Description

Functions naturalSpline() and nsk() generate the natural cubic spline basis functions, the cor-
responding derivatives or integrals (from the left boundary knot). Both of them are different

naturalSpline 19

from splines::ns(). However, for a given model fitting procedure, using different variants of
spline basis functions should result in identical prediction values. The coefficient estimates of the
spline basis functions returned by nsk() are more interpretable compared to naturalSpline() or
splines::ns() .

Usage

naturalSpline(
x,
df = NULL,
knots = NULL,
intercept = FALSE,
Boundary.knots = NULL,
trim = 0,
derivs = 0L,
integral = FALSE,
...

)

nsp(
x,
df = NULL,
knots = NULL,
intercept = FALSE,
Boundary.knots = NULL,
trim = 0,
derivs = 0L,
integral = FALSE,
...

)

nsk(
x,
df = NULL,
knots = NULL,
intercept = FALSE,
Boundary.knots = NULL,
trim = 0,
derivs = 0L,
integral = FALSE,
...

)

Arguments

x The predictor variable. Missing values are allowed and will be returned as they
are.

df Degree of freedom that equals to the column number of returned matrix. One
can specify df rather than knots, then the function chooses df - 1 - as.integer(intercept)

20 naturalSpline

internal knots at suitable quantiles of x ignoring missing values and those x out-
side of the boundary. Thus, df must be greater than or equal to 2. If internal
knots are specified via knots, the specified df will be ignored.

knots The internal breakpoints that define the splines. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are the
mean or median for one knot, quantiles for more knots. For periodic splines, the
number of knots must be greater or equal to the specified degree - 1. Duplicated
internal knots are not allowed.

intercept If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output.

Boundary.knots Boundary points at which to anchor the splines. By default, they are the range
of x excluding NA. If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary.knots. For
periodic splines, the specified bounary knots define the cyclic interval.

trim The fraction (0 to 0.5) of observations to be trimmed from each end of x before
placing the default internal and boundary knots. This argument will be ignored if
Boundary.knots is specified. The default value is 0 for backward compatibility,
which sets the boundary knots as the range of x. If a positive fraction is specified,
the default boundary knots will be equivalent to quantile(x, probs = c(trim,
1 - trim), na.rm = TRUE), which can be a more sensible choice in practice due
to the existence of outliers. The default internal knots are placed within the
boundary afterwards.

derivs A nonnegative integer specifying the order of derivatives of natural splines. The
default value is 0L for the spline basis functions.

integral A logical value. The default value is FALSE. If TRUE, this function will return the
integrated natural splines from the left boundary knot.

... Optional arguments that are not used.

Details

The constructed spline basis functions from naturalSpline() are nonnegative within boundary
with the second derivatives being zeros at boundary knots. The implementation utilizes the close-
form null space that can be derived from the recursive formula for the second derivatives of B-
splines. The function nsp() is an alias of naturalSpline() to encourage the use in a model
formula.

The function nsk() produces another variant of natural cubic spline matrix such that only one of
the basis functions is nonzero and takes a value of one at every boundary and internal knot. As a
result, the coefficients of the resulting fit are the values of the spline function at the knots, which
makes it easy to interpret the coefficient estimates. In other words, the coefficients of a linear model
will be the heights of the function at the knots if intercept = TRUE. If intercept = FALSE, the
coefficients will be the change in function value between each knot. This implementation closely
follows the function nsk() of the survival package (version 3.2-8). The idea corresponds directly
to the physical implementation of a spline by passing a flexible strip of wood or metal through a set
of fixed points, which is a traditional way to create smooth shapes for things like a ship hull.

The returned basis matrix can be obtained by transforming the corresponding B-spline basis matrix
with the matrix H provided in the attribute of the returned object. Each basis is assumed to follow

naturalSpline 21

a linear trend for x outside of boundary. A similar implementation is provided by splines::ns,
which uses QR decomposition to find the null space of the second derivatives of B-spline basis
at boundary knots. See Supplementray Materials of Wang and Yan (2021) for a more detailed
introduction.

Value

A numeric matrix of length(x) rows and df columns if df is specified or length(knots) + 1 +
as.integer(intercept) columns if knots are specified instead. Attributes that correspond to the
arguments specified are returned for usage of other functions in this package.

See Also

bSpline for B-splines; mSpline for M-splines; iSpline for I-splines.

Examples

library(splines2)

x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)

naturalSpline()
nsMat0 <- naturalSpline(x, knots = knots, intercept = TRUE)
nsMat1 <- naturalSpline(x, knots = knots, intercept = TRUE, integral = TRUE)
nsMat2 <- naturalSpline(x, knots = knots, intercept = TRUE, derivs = 1)
nsMat3 <- naturalSpline(x, knots = knots, intercept = TRUE, derivs = 2)

op <- par(mfrow = c(2, 2), mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
plot(nsMat0, ylab = "basis")
plot(nsMat1, ylab = "integral")
plot(nsMat2, ylab = "1st derivative")
plot(nsMat3, ylab = "2nd derivative")
par(op) # reset to previous plotting settings

nsk()
nskMat <- nsk(x, knots = knots, intercept = TRUE)
plot(nskMat, ylab = "nsk()", mark_knots = "all")
abline(h = 1, col = "red", lty = 3)

use the deriv method
all.equal(nsMat0, deriv(nsMat1), check.attributes = FALSE)
all.equal(nsMat2, deriv(nsMat0))
all.equal(nsMat3, deriv(nsMat2))
all.equal(nsMat3, deriv(nsMat0, 2))

a linear model example
fit1 <- lm(weight ~ -1 + nsk(height, df = 4, intercept = TRUE), data = women)
fit2 <- lm(weight ~ nsk(height, df = 3), data = women)

the knots (same for both fits)
knots <- unlist(attributes(fit1$model[[2]])[c("Boundary.knots", "knots")])

22 plot.splines2

predictions at the knot points
predict(fit1, data.frame(height = sort(unname(knots))))
unname(coef(fit1)) # equal to the coefficient estimates

different interpretation when "intercept = FALSE"
unname(coef(fit1)[-1] - coef(fit1)[1]) # differences: yhat[2:4] - yhat[1]
unname(coef(fit2))[-1] # ditto

plot.splines2 Visualize Spline Basis Functions

Description

Plot spline basis functions by lines in different colors.

Usage

S3 method for class 'splines2'
plot(
x,
y,
from = NULL,
to = NULL,
n = 101,
coef = NULL,
mark_knots = c("none", "internal", "boundary", "all"),
...

)

Arguments

x A splines2 object.

y An argument that is not used.

from, to Two numbers representing the start and end point for the plot, respectively.

n An integer, the number of x values at which to evaluate.

coef A numeric vector specifying the coefficients of the spline basis functions. If it
is NULL (by default), the spline basis functions will be plotted. Otherwise, the
resulting spline function will be plotted.

mark_knots A character vector specifying if knot placement should be indicated by vertical
lines.

... Additional arguments (other than x and y) that would be passed to matplot().

Details

This function is intended to quickly visualize the spline basis functions.

predict 23

predict Compute Spline Function for Given Coefficients

Description

Returns the spline function (with the specified coefficients) or evaluate the basis functions at the
specified x if the coefficients are not specified.

Usage

S3 method for class 'BSpline'
predict(object, newx = NULL, coef = NULL, ...)

S3 method for class 'MSpline'
predict(object, newx = NULL, coef = NULL, ...)

S3 method for class 'ISpline'
predict(object, newx = NULL, coef = NULL, ...)

S3 method for class 'CSpline'
predict(object, newx = NULL, coef = NULL, ...)

S3 method for class 'BernsteinPoly'
predict(object, newx = NULL, coef = NULL, ...)

S3 method for class 'NaturalSpline'
predict(object, newx = NULL, coef = NULL, ...)

S3 method for class 'NaturalSplineK'
predict(object, newx = NULL, coef = NULL, ...)

Arguments

object Spline objects produced by the splines2 package.

newx The x values at which evaluations are required. If it is NULL (by default), the
original x used to create the spline object will be used.

coef A numeric vector specifying the coefficients of the spline basis functions. If it
is NULL (by default), the spline basis functions will be returned. Otherwise, the
resulting spline function will be returned.

... Other options passed to the corresponding function that constructs the input
object. For example, the additional options will be passed to bSpline() for a
BSpline object.

24 predict

Value

The function returns the spline basis functions with the new values of x if coef is not specified.
Otherwise, the function returns the resulting spline function (or its derivative if derivs is specified
as a positive integer through ...).

Examples

library(splines2)

x <- seq.int(0, 1, 0.2)
knots <- c(0.3, 0.5, 0.6)
newx <- seq.int(0.1, 0.9, 0.2)

Cubic B-spline basis functions
bs_mat <- bSpline(x, knots = knots)

compute the B-spline basis functions at new x
predict(bs_mat, newx)

compute the B-spline function for the specified coefficients
beta <- runif(ncol(bs_mat))
predict(bs_mat, coef = beta)

compute the first derivative of the B-spline function
predict(bs_mat, coef = beta, derivs = 1)
or equivalently
predict(deriv(bs_mat), coef = beta)

compute the second derivative
predict(bs_mat, coef = beta, derivs = 2)
or equivalently
predict(deriv(bs_mat, derivs = 2), coef = beta)

compute the integral
predict(bs_mat, coef = beta, integral = TRUE)
or equivalently
predict(update(bs_mat, integral = TRUE), coef = beta)

visualize
op <- par(mfrow = c(2, 2), mar = c(2.5, 2.5, 0.5, 0.1), mgp = c(1.5, 0.5, 0))
plot(bs_mat, coef = beta, ylab = "B-Spline Function", mark_knots = "all")
plot(deriv(bs_mat), coef = beta, ylab = "1st Derivative", mark_knots = "all")
plot(deriv(bs_mat, derivs = 2), coef = beta,

ylab = "2nd Derivative", mark_knots = "all")
plot(update(bs_mat, integral = TRUE), coef = beta,

ylab = "Integral", mark_knots = "all")
par(op)

update 25

update Update Spline Basis Functions

Description

Update the knot placement, polynomial degree, and any other options available when constructing
the given spline object.

Usage

S3 method for class 'BSpline'
update(object, ...)

S3 method for class 'MSpline'
update(object, ...)

S3 method for class 'ISpline'
update(object, ...)

S3 method for class 'CSpline'
update(object, ...)

S3 method for class 'BernsteinPoly'
update(object, ...)

S3 method for class 'NaturalSpline'
update(object, ...)

S3 method for class 'NaturalSplineK'
update(object, ...)

Arguments

object Spline objects produced by the splines2 package.

... Other arguments passed to the corresponing constructor function.

Value

An updated object of the same class as the input object with the specified updates.

Examples

library(splines2)

x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)

quadratic B-splines

26 update

bsMat2 <- bSpline(x, knots = knots, degree = 2, intercept = TRUE)

cubic B-splines
bsMat3 <- update(bsMat2, degree = 3)

Index

bernsteinPoly, 2
bpoly (bernsteinPoly), 2
bsp (bSpline), 4
bSpline, 4, 17, 21

csp (cSpline), 7
cSpline, 7, 14, 17

dbs (bSpline), 4
deriv, 10

ibs (bSpline), 4
isp (iSpline), 12
iSpline, 9, 12, 17, 21

knots, 6, 14

msp (mSpline), 15
mSpline, 9, 14, 15, 21

naturalSpline, 18
nsk (naturalSpline), 18
nsp (naturalSpline), 18

plot.splines2, 22
predict, 23

update, 25

27

	bernsteinPoly
	bSpline
	cSpline
	deriv
	iSpline
	knots
	mSpline
	naturalSpline
	plot.splines2
	predict
	update
	Index

